
Concerning some spacecraft convergence. control laws 561 

time of interception) for given initial conditions are altered ; conversely, the initial con- 

ditions are altered for given final conditions, 
Control law (3.9) is valid for interception of a target in any orbit, be it circular, etlip- 

tical, parabolic, or hyperbolic. 
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We consider a control system described by an nth order differential equation with random 
coefficients. Necessary and sufficient conditions of existence of a linear control stabi- 

lizing such a system in the mean square and conveying a minimum to the quadratic 
quality criterion are obtained. The problem of stabilization of a stochastic system in 
which the noise depends on the magnitude of the controlling force was also studied in 

VI. 
1. Let a linear stochastic system be given, defined by the following nth order differ- 

ential equation : 

where 
y(n) + [a1 + %i (t)lY @-w + . ..+ [a, + Cn’(t)]y = ie + aq’ (t)lu (1.1) 

ai = const, bi = con& # 9 (i = 1,2,...,n) 

Al is a scalar control, E:‘(t) are the Gaussian white noises with zero mathematical expec- 
tation which are,in general, interrelated in such a way that 

M&’ (t) %j' (S) = 2Ui$ (t - S) 

and n’ (t) is a white noise process inde~ndent of the set &+ (t),...,%,‘(t) , In addition 

Mn’ (1) = 0, JQ’ (W (4 - 26 (t - 5) 
Let us set 

$i = x1, y’ = X,,...,y@--‘I= x, 

Then (1.1) can be assumed to represent a system of stochastic differential Ito equa- 

tions (see e. g. 121) dxr = x,dt, dX, = X,dt,...,dX,l = X,dt (I.21 
n 

dXn = - c 2 I aiXn-i+l + bu) dt - i %jX,_,,, dqJ (4 -I- a dq PI 
i=l 4, j=l 

where rll, q2,..., tin and 11 denote mutually independent Gaussian Markov processes for 
which Mq’+ (t) = 0, Mq32 (t) = 2t 

and the matrix 1/Q+j \I is obtained from the condition 

II a% j II II “ji II = Il’il II 
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Let us denote the solution of (1.2) with the initial condition X,’ (0)~ 5 by XE (t) . 
The generating operator of the process X,,* (t) has the form 

Let now P be a positive definite matrix. Our problem is to determine the law of con- 
trol u = ito [z] under which the functional 

03 

JxP (u) = M s [(PX,” (t), XUX (t)) + u2 (01 dt (1.3) 
0 

assumes its minimum value. Obviously the control u = u Is] under which J,~ (u) is 
meaningful, brings the system (1.2) to asymptotic stability in the quadratic mean. 

To solve our problem we have to determine the optimal Liapunov function V, (5) = 

= (Cs, 5) satisfying the Liapunov-Bellman equation 13 and 47 

L,,VO + (Ps, 5) + zig = min, [I+, V, + (Ps, 5) + A = 0 (f-4) 

From (1.4) we obtain the following equation for the matrix C = [j CQ )( in the usual 
manner: 

(1.5) 

0 0 1 0 . . . 0 

0 0 0 1 I . * 0 
b= , 

j3= 0 0 0 
A = II an-i+t. n-j+1 II 

. . . 1 ’ 

n - a1 
b 

- a7L -- a,_l - a,._% . . . 

where the superscript * denotes the operation of ~ans~sition. Moreover, if Eq. (1.4) has 
a positive definite solution V, (z), the optimal control has the form 

b aviJ 
u() = - - 

2 (1 + 202aVolax~2) ax, 

To obtain a solution to the problem of optimal stabilization of the system (1.2) it is 
sufficient that there exists a positive definite matrix C satisfying Eq. (1.5). The optimal 
control u = u. [z] can be chosen in the form of a linear function of z. Further. using 

the method of consecutive approximations [5. 61 we can easily prove the following lem- 

ma. 
L e m m a 1.1. If a linear control u = u ]z] exists for the system (1.2) such that 

JXP* (~1) < c~ for some positive definite matrix P*, lnen a solution of (1.5) in the form 

of a umque positive definite matrix C exists for any positive definite matrix P. 

8, Let us first assume that o # 0 and, that the matrix A is positive definite. For P = 

= Alaa , Eq. (1. 5) has the form 

CB+B*C-- f+20Zc cbbiCnn +j2e,,+&)A=0 (3.2) 

which can obviously be written in the form 

DB + B*D - Dbrbr*D* + A = 0 (2.2) 

Since the system 

(2.3) 
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ytn) + a#-‘I + . . . + any = blu, bl = ba-1 (2.4) 
is fully controllable, Eq. (2.2) has a unique, positive definite solution Do= ]] &j(O) ]f. 

This together with (2.3) implies that the matrix 

satisfies Eq. (2.1). 
co = II CC’ II = as (1 _;(j (0)) 

7ln 

Let the condition d,, to) < l/a hold. Then the matrix Co is positive definite and there 

exists a linear control b 

u” = - 2 (1 + 2dc,,) 
avo (2) 

axn ’ Vo(+= (Coz, x) 

minimizing the functional (1.3). 

Conversely, let the linear control u = ulz] for which J,P (u) < 0~ exists for the sys- 
tem (1.2). Then by Lemma 1.1, Eq. (1.5) has a positive definite solution Co, and obvi- 

ously 

Thus, when the matrix A is positive definite, an optimal control exists if and only if 
condition d,i”) <l/s holds, where d,, (O) denotes an element of the matrix Do =I] dij’)]\ 
representing the only positive definite solution of (2.2). 

We shall now show how to express the coefficient PI,:) in terms of the parameters of 
the stochastic system (1.2). 

To do this, we shall denote by 1~~ = vly + . ..+ v~IJ(“-~) the control minimizing the 

functional co n 

SD ! %-i+1n-jt1Y 
+l)y'j-l, + $I& 

0 i, j=l 
. 

on the solutions of (2.4) when u = u,,. It is easy to see that 

d,,$? = -V, / bl (2.5) 

Further, we shall amsider the polynomial 

H(h) = D(h) D(- h) + bp i u,_~+~ n_j+l (- qi+’ hi+j-2 (2.6) 
i, j=l 

D (h) = hn + a&“-l + . ..+ %I 

Let us denote by a the sum of the roots of the equation H (h) = 0 possessing positive 
real parts. As we know, there are exactly n such roots when the matrix A is positive 
definite (see e. g. fl]). From the results of [7, 83 it follows that v, = (al - a)bl-l, there- 

fore by (2.5) we have d,,$‘) = (a - al)bl*. 

Thus, when the matrix A is positive definite. an optimal control exists for the problem 
(1.2). (1.3) if and only if the following inequality holds: 

2oa (a - al) < ba (2.7) 

Let us now assume that A is only nonnegative definite and that o , as before. is not 
zero (in this case the equation H (h) = 0 can have purely imaginary roots). We supple- 
ment the coefficients ai of the system (1.2) with white noises of low dispersion E, inde 

pendent of each other and of th and 9 . Subsequently proceeding to the limit as e -, 0 
(as in 191). we find that the inequality (2.7) represents the sufficient condition ,and the 
relation 2oa (a - ~1) < ba the necessary condition of existence of an optimal linear con- 
trol, solving the problem in question. 

It can be shown that, in fact, the equality sign in the latter relation must be omitted. 
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This can be easily verified for the cases n = 1 and 2. 

Thus we have the following theorem. 
Theorem 2.1. Let u #0 and hi ,...,h,, k< n be roots of the equation H (h) = 0 

possessing positive real parts. If the inequality 

(2.8) 

holds, the problem of optimal stabilization of the system (1.2) with the quality criterion 

(1.3) has a solution in the class of linear controls; but if the inequality 

%‘(i hi-arJ>b” 
i=l 

holds, then no such solution exists. 
However, when the matrix A is positive definite (k = n), the inequality (2. 8) will not 

only be sufficient but will also become necessary for the existence of an optimal linear 
control stabilizing the system (1.2). 

Let us now set o = 0. Using the fact that H (h) = 0 contains only even powers of h, 
we can easily establish that 1 hi 1 2 = 0 (C2) when o -+ 0. Consequently, for any para- 

meters ai, b # 0 and air there exists a sufficiently small IS =t (I* for which the inequatity 
(2.7) holds, i. e. the system (1.2) is asymptotically stable in the quadratic mean when 

o = o*.This, together with Tneorem 5. 1 of [lo] and Lemma 1. 1 yields at once the fol- 

lowing theorem. 
The ore m 2.2. Let u = 0. Then for any parameters ai, b # 0 and aij there exists 

a linear control u = z+,[x] minimizing the functional (1.3) on the solutions of the sys- 

tem (1.2) with u = u0 [x] . 

3. Let us consider a particular case of the following stochastic system: 

Y(“) + UlY en-t)+ . ..+ a,y = (b + 0’1’ (t))u 

For this system we nave 
H (1) = D (h)D (-1) 

Let pl,...#zand v1 ,..., Y,, E f m < n be the roots of the polynomial D (h) = 0 with 
positive and negative real parts, respectively. Then we obviously have 

a = (I&l + . ..+ pr- VI - . ..- Ym) 

Further, ai = -(pl + . ..+ pl i- ~1 i- . ..+ v,,J, therefore from Theorem 2.1 it fol- 

lows that the condition of existence of an optimal control is : 

Finally we note that the first and second order conditions of existence of an optimal 

control for the system (1.2) are respectively : 

l/u12 + (b/a)%zl~ - al < l/2( b/a)? for n = i 

G ( b/a)2azz - 2az + 2 ? ~~2 + (b/E)2 aI1 - UI < 1/z(b/a)2 for n = 2 

The author expresses his gratitude to R, Z. Khas’minskii for several valuable remarks. 
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Using the methods of the theory of cones we establish a sufficient condition of stability 
of solutions of an n-th order linear differential equation. 

Let us consider the following linear differential equation: 
d”x d”-lx 

x+ rJ1wdt'L-l+. . . + "n(t)x=u (1) 

where pi (t) (i= 1, . . ., n; t, < t < m) are continuous functions. We shall indicate 
one criterion of the stability of solutions of (1) in terms of its characteristic polynomial 

P (t, h) -in + p1 (t) An-l + . . + p*(t) (2) 

We will use certain concepts of the theory of cones [l, 21. 
Let us write Eq. (1) in the form of a first order equation in an n-dimensional Euclidean 

space Rn 


